Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles
نویسندگان
چکیده
Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances.
منابع مشابه
Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملRotary-Wing UAVs Trajectory Planning by Distributed Linear MPC with Reconfigurable Communication Network Topologies
In this paper, a distributed approach to Model Predictive Control (MPC)-based trajectory planning for rotary-wing UAV (Unmanned Aerial Vehicle) communication network topologies under radio path loss constraints is proposed. The goal is to find trajectories that are safe with respect to grounding and collision, fuel efficient and satisfy criteria for communication such that the UAVs form chains ...
متن کاملNew Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles
This paper summarizes ongoing work concerning micro-rotorcraft (MRC) – i.e., rotary-wing micro air vehicles (MAV) – research and development. Technology trends involving microelectronic miniaturization, vehicle autonomy systems, electric propulsion and power electronics are contributing to an ongoing revolution in MAV and MRC aerial vehicle concepts and applications. New vehicle configurations ...
متن کاملSensor-Based 3-D Pose Estimation and Control of Rotary-Wing UAVs Using a 2-D LiDAR
This paper addresses the problem of deriving attitude estimation and trajectory tracking strategies for unmanned aerial vehicles (UAVs) using exclusively on-board sensors. The perception of the vehicle position and attitude relative to a structure is achieved by robustly comparing a known pier geometry or map with the data provided by a LiDAR sensor, solving an optimization problem and also rob...
متن کاملTrajectory tracking of autonomous vessels using model predictive control ⋆
Autonomous surface vehicles are with increasing popularity being seen in various applications where automatic control plays an important role. In this paper the problem of twodimensional trajectory tracking for autonomous marine surface vehicles is addressed using Model Predictive Control (MPC). At each time step, the reference trajectories of a vessel are assumed to be known over a finite time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.09240 شماره
صفحات -
تاریخ انتشار 2016